login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form (p(2n)-p(n))/(7*2), where p(n)=n-th prime.
0

%I #5 Feb 01 2019 15:51:30

%S 3,19,41,173,181,281,347,373,401,409,433,449,461,461,479,499,509,541,

%T 547,571,577,619,691,701,709,859,881,919,929,1087,1091,1093,1097,1193,

%U 1229,1367,1367,1481,1483,1511,1523,1553,1559,1579,1601,1667,1697,1699

%N Primes of the form (p(2n)-p(n))/(7*2), where p(n)=n-th prime.

%e If n=10, then (p(10*2)-p(10))/7*2=(71-29)/14=3=a(1).

%e If n=45, then (p(45*2)-p(45))/7*2=(463-197)/14=19=a(2).

%e If n=85, then (p(85*2)-p(85))/7*2=(1013-439)/14=41=a(3).

%e If n=300, then (p(300*2)-p(300))/7*2=(4409-1987)/14=173=a(4).

%e If n=311, then (p(311*2)-p(311))/7*2=(4597-2063)/14=181=a(5).

%e If n=459, then (p(459*2)-p(459))/7*2=(7187-3253)/14=281=a(6), etc.

%t Select[Table[(Prime[2n]-Prime[n])/14,{n,3000}],PrimeQ] (* _Harvey P. Dale_, Feb 01 2019 *)

%Y Cf. A000040.

%Y Cf. A072473. [From _R. J. Mathar_, Oct 04 2008]

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Sep 18 2008

%E More terms from _R. J. Mathar_, Oct 04 2008

%E Definition clarified by _Harvey P. Dale_, Feb 01 2019