login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x) = exp(x*A(exp(x)-1)).
1

%I #7 Feb 14 2014 07:10:23

%S 1,1,3,19,189,2646,48763,1131586,32049993,1082499355,42824201581,

%T 1956135246121,101971684168885,6007537986240493,396692981028462147,

%U 29151125494423827526,2369159815571293228865,211779737665939491669492

%N E.g.f. satisfies: A(x) = exp(x*A(exp(x)-1)).

%H Alois P. Heinz, <a href="/A141623/b141623.txt">Table of n, a(n) for n = 0..100</a>

%p A:= proc(n) option remember; if n=0 then 1 else unapply (convert (series (exp (x* A(n-1)(exp(x)-1)), x,n+1), polynom),x) fi end; a:= n-> coeff (A(n)(x), x,n)*n!: seq (a(n), n=0..20);

%t A[n_] := A[n] = If[n == 0, 1, Normal[Series[Exp[x*A[n-1][Exp[x]-1]], {x, 0, n+1}]] /. x -> #]&; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 14 2014, after Maple *)

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 24 2008