Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 28 2014 17:45:20
%S 1,1,1,-1,1,-5,10,-9,3,1,-21,210,-1321,5823,-18968,46908,-89034,
%T 129490,-142270,114532,-63791,21940,-3499,1,-84,3486,-95228,1924965,
%U -30690520,401700964,-4436161044,42161182074,-350011820616,2567538234448
%N Triangle read by rows: coefficients of chromatic polynomials for the poset of Dyck paths ordered by inclusion.
%C Number of entries in the rows are the Catalan numbers, see A000108.
%D G. Berman and K. D. Fryer, Introduction to Combinatorics, Academic Press, New York, 1972.
%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999
%H Alois P. Heinz, <a href="/A141622/b141622.txt">Rows n = 0..5, flattened</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>
%H J. Woodcock, <a href="http://garsia.math.yorku.ca/~zabrocki/papers/DPfinal.pdf">Properties of the poset of Dyck paths ordered by inclusion</a>
%e Chromatic polynomial for D_3 is t^5 - 5t^4 + 10t^3 - 9t^2 +3t =>
%e [1, -5, 10, -9, 3]
%e Triangle begins:
%e 1;
%e 1;
%e 1, -1;
%e 1, -5, 10, -9, 3;
%e 1, -21, 210, -1321, 5823, -18968, 46908, ...
%e 1, -84, 3486, -95228, 1924965, -30690520, 401700964, ...
%p with(networks);
%p new(G); # this is the graph for D_3
%p addvertex({1, 2, 3, 4}, G); addedge(Cycle(1, 2, 3, 4), G);
%p addvertex(5, G); addedge({4, 5}, G); draw(G);
%p ans:= sort (expand (chrompoly(G, x)));
%p # 2nd program
%p with(networks):
%p d:= proc(x, y, l) option remember;
%p `if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
%p end:
%p le:= proc(l1, l2) local i;
%p for i to nops(l1) do if l1[i]>l2[i] then return false fi od;
%p true
%p end:
%p T:= proc(n) local l, m, p;
%p l:= d(n, n, []); m:= nops(l);
%p p:= chrompoly(graph({$1..m}, {seq(seq(`if`(le(l[i], l[j]),
%p `if`(true in {seq(k<>i and k<>j and le(l[i], l[k])
%p and le(l[k], l[j]), k=1..m)}, NULL, {i, j}), NULL),
%p j=i+1..m), i=1..m)}), t);
%p seq(coeff(p, t, m-i), i=0..m-1)
%p end:
%p seq(T(n), n=0..4); # _Alois P. Heinz_, Jul 24 2011
%Y Cf. A000108.
%K sign,tabf
%O 0,6
%A Jennifer Woodcock (Jennifer.Woodcock(AT)ugdsb.on.ca), Aug 23 2008
%E More terms from _Alois P. Heinz_, Jul 24 2011