Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Mar 31 2021 01:29:03
%S 0,1,1,2,3,3,3,5,6,6,4,7,9,10,10,5,9,12,14,15,15,6,11,15,18,20,21,21,
%T 7,13,18,22,25,27,28,28,8,15,21,26,30,33,35,36,36,9,17,24,30,35,39,42,
%U 44,45,45
%N Triangle read by rows: T(n,k) = k * (2*n - k - 1) / 2, 1 <= k <= n.
%C From _Reinhard Zumkeller_, Aug 04 2014: (Start)
%C n-th row = half of Dynkin diagram weights for the Cartan Groups D_n.
%C n-th row = partial sums of n-th row of A025581. (End)
%D R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.
%H Reinhard Zumkeller, <a href="/A141418/b141418.txt">Rows n = 1..120 of triangle, flattened</a>
%F T(n, K) = k*(2*n - k - 1)/2.
%F Sum_{k=1..n} T(n, k) = 2*binomial(n+1, 3) = A007290(n+1). - _Reinhard Zumkeller_, Aug 04 2014
%e Triangle begins as:
%e 0;
%e 1, 1;
%e 2, 3, 3;
%e 3, 5, 6, 6;
%e 4, 7, 9, 10, 10;
%e 5, 9, 12, 14, 15, 15;
%e 6, 11, 15, 18, 20, 21, 21;
%e 7, 13, 18, 22, 25, 27, 28, 28;
%e 8, 15, 21, 26, 30, 33, 35, 36, 36;
%e 9, 17, 24, 30, 35, 39, 42, 44, 45, 45;
%p A141418:= (n,k)-> k*(2*n-k-1)/2; seq(seq(A141418(n,k), k=1..n), n=1..12); # _G. C. Greubel_, Mar 30 2021
%t T[n_, k_]= k*(2*n-k-1)/2; Table[T[n, k], {n,12}, {k,n}]//Flatten
%o (Haskell)
%o a141418 n k = k * (2 * n - k - 1) `div` 2
%o a141418_row n = a141418_tabl !! (n-1)
%o a141418_tabl = map (scanl1 (+)) a025581_tabl
%o -- _Reinhard Zumkeller_, Aug 04 2014, Nov 18 2012
%o (Magma) [k*(2*n-k-1)/2: k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 30 2021
%o (Sage) flatten([[k*(2*n-k-1)/2 for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 30 2021
%Y Cf. A025581, A087401, A141419.
%K nonn,tabl,easy
%O 1,4
%A _Roger L. Bagula_, Aug 05 2008
%E Edited by _Reinhard Zumkeller_, Nov 18 2012