login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).
9

%I #57 Sep 08 2022 08:45:35

%S 3,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,

%T 739,787,811,859,883,907,1051,1123,1171,1291,1459,1483,1531,1579,1627,

%U 1699,1723,1747,1867,1987,2011,2083,2131,2179,2203,2251,2347,2371,2467,2539

%N Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

%C The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.

%C Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - _T. D. Noe_, May 19 2008

%D Z. I. Borevich and I. R. Shafarevich, Number Theory.

%H Ray Chandler, <a href="/A141373/b141373.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H William C. Jagy and Irving Kaplansky, <a href="/A244019/a244019.pdf">Positive definite binary quadratic forms that represent the same primes</a> [Cached copy] See Table II.

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014.

%H D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981.

%F Except for 3, the primes are congruent to 19 (mod 24). - _T. D. Noe_, May 02 2008

%e 19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).

%t QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)

%o (Magma) [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // _Vincenzo Librandi_, Jul 24 2012

%o (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017

%Y Cf. A107132, A139827, A107003, A141375, A141376 (d=96).

%Y See also A038872 (d=5),

%Y A038873 (d=8),

%Y A068228, A141123 (d=12),

%Y A038883 (d=13),

%Y A038889 (d=17),

%Y A141158 (d=20),

%Y A141159, A141160 (d=21),

%Y A141170, A141171 (d=24),

%Y A141172, A141173 (d=28),

%Y A141174, A141175 (d=32),

%Y A141176, A141177 (d=33),

%Y A141178 (d=37),

%Y A141179, A141180 (d=40),

%Y A141181 (d=41),

%Y A141182, A141183 (d=44),

%Y A033212, A141785 (d=45),

%Y A068228, A141187 (d=48),

%Y A141188 (d=52),

%Y A141189 (d=53),

%Y A141190, A141191 (d=56),

%Y A141192, A141193 (d=57),

%Y A107152, A141302, A141303, A141304 (d=60),

%Y A141215 (d=61),

%Y A141111, A141112 (d=65),

%Y A141336, A141337 (d=92),

%Y A141338, A141339 (d=93),

%Y A141161, A141163 (d=148),

%Y A141165, A141166 (d=229),

%Y A141167, A141167, A141167 (d=257).

%K nonn

%O 1,1

%A _T. D. Noe_, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

%E More terms from _Colin Barker_, Apr 05 2015

%E Edited by _N. J. A. Sloane_, Jul 14 2019, combining two identical entries both with multiple cross-references.