Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Feb 17 2019 08:51:53
%S 1,2,11,108,1713,36470,969919,30847464,1142093211,48275435126,
%T 2295244558713,121298268430124,7056341421006321,448203413035086358,
%U 30870845475874376523,2292084206324841742216,182512808842356490744432
%N Euler transform of A141313.
%C Dimensions of the graded components of the domain of cocommutativity of the Hopf algebra of 2-colored parking functions.
%H J.-C. Novelli and J.-Y. Thibon, <a href="https://arxiv.org/abs/0806.3682">Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions</a>, arXiv:0806.3682 [math.CO], 2008.
%p EULER([seq(c(n,n=1..20)]); # where c(n) is A141313.
%t terms = 17;
%t s = (1 - 1/(1 + Sum[(n+1)^(n-1)*t^n, {n, 1, terms}]))/t + O[t]^(terms-1);
%t A141313 = 2^Range[terms-1]*CoefficientList[s, t];
%t did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
%t EulerTransform[seq_] := Module[{coeff, final = {}}, coeff = Table[Sum[d* did[i, d]*seq[[d]], {d, 1, i}], {i, 1, Length[seq]}]; For[i = 1, i <= Length[seq], i++, AppendTo[final, (coeff[[i]] + Sum[coeff[[d]]*final[[i - d]], {d, 1, i-1}])/i]]; final];
%t Join[{1}, EulerTransform[A141313]] (* _Jean-François Alcover_, Feb 17 2019 *)
%Y Cf. A141313.
%K nonn
%O 1,2
%A Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008