The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141312 Inverse Euler transform of A003480. 1
 1, 2, 4, 12, 31, 92, 256, 772, 2291, 7000, 21476, 66804, 208935, 658924, 2088628, 6656820, 21306270, 68468796, 220776444, 714117012, 2316229821, 7531561676, 24545492916, 80160031076, 262279882239, 859660694960, 2822177751148, 9278647613760, 30547880467863 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Dimensions of the graded components of the primitive Lie algebra of the Hopf algebra of noncommutative multisymmetric functions of level 2. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008. FORMULA a(n) ~ (2 + sqrt(2))^n / n. - Vaclav Kotesovec, Oct 09 2019 MAPLE EULERi(INVERT([seq(n+1, n=1..20)])); MATHEMATICA terms = 29; mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i=1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i-d]], {d, 1, i-1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]]; Join[{1}, EULERi[LinearRecurrence[{4, -2}, {2, 7}, terms-1]]] (* Jean-François Alcover, Nov 25 2018 *) CROSSREFS Cf. A003480. Sequence in context: A296292 A287966 A148191 * A148192 A192531 A323864 Adjacent sequences:  A141309 A141310 A141311 * A141313 A141314 A141315 KEYWORD nonn AUTHOR Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008 EXTENSIONS More terms from Alois P. Heinz, Feb 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 19:03 EST 2022. Contains 350565 sequences. (Running on oeis4.)