login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations that lie in the cyclic closure of Av(132)--i.e., at least one cyclic rotation of the permutation avoids the pattern 132.
2

%I #14 Aug 19 2022 11:46:25

%S 1,2,6,24,100,408,1631,6440,25263,98790,385803,1506156,5881057,

%T 22974406,89804910,351279584,1375035208,5386203792,21113167346,

%U 82816267480,325055630634,1276635121388,5016837177052,19725798613152,77601159558800

%N Number of permutations that lie in the cyclic closure of Av(132)--i.e., at least one cyclic rotation of the permutation avoids the pattern 132.

%H G. C. Greubel, <a href="/A141253/b141253.txt">Table of n, a(n) for n = 1..1000</a>

%H M. D. Atkinson, M. H. Albert, R. E. L. Aldred, H. P. van Ditmarsch, C. C. Handley, D. A. Holton, D. J. McCaughan, C. Monteith, <a href="https://ajc.maths.uq.edu.au/pdf/38/ajc_v38_p087.pdf">Cyclically closed pattern classes of permutations</a>, Australasian J. Combinatorics 38 (2007), 87-100.

%H R. Brignall, S. Huczynska, V. Vatter, <a href="https://doi.org/10.1016/j.jcta.2007.06.007">Simple permutations and algebraic generating functions</a>, J. Combinatorial Theory, Series A 115 (2008), 423-441.

%F G.f.: (1-4*x+4*x^2-4*x^3-(1-2*x)*sqrt(1-4*x))/(2*x*(1-x)^2*sqrt(1-4*x)).

%F a(n) = n(C(n) - C(n-1) - ... - C(1)), where C(n) denotes the n-th Catalan number.

%F a(n) ~ 2^(2*n+1)/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014

%F D-finite with recurrence -3*(n+1)*(n-3)*a(n) +n*(17*n-43)*a(n-1) +2*(-11*n^2+35*n-30)*a(n-2) +4*(n-2)*(2*n-5)*a(n-3)=0. - _R. J. Mathar_, Aug 19 2022

%F D-finite with recurrence (n-1)*(n-3)*(n+1)*a(n) -n*(5*n^2-16*n+9)*a(n-1) +2*n*(n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Aug 19 2022

%e a(5)=100 because 100 permutations of length 5 have at least one cyclic rotation which avoids 132.

%t Rest[CoefficientList[Series[(1-4*x+4*x^2-4*x^3-(1-2*x)*Sqrt[1-4*x]) / (2*x*(1-x)^2*Sqrt[1-4*x]), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 20 2014 *)

%o (PARI) x='x+O('x^50); Vec((1-4*x+4*x^2-4*x^3-(1-2*x)*sqrt(1-4*x))/(2*x*(1-x)^2*sqrt(1-4*x))) \\ _G. C. Greubel_, Mar 21 2017

%Y Cf. A141254.

%K nonn

%O 1,2

%A _Vincent Vatter_, Jun 17 2008