login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 9*x^2+7*x*y-5*y^2.
8

%I #38 Feb 29 2020 18:10:26

%S 3,5,11,17,19,43,61,71,83,97,103,149,151,167,181,233,271,277,293,307,

%T 311,337,367,373,397,401,409,421,431,433,457,463,467,491,557,569,587,

%U 631,641,661,673,683,701,733,743,751,757,769,787,821,859,863,883,911

%N Primes of the form 9*x^2+7*x*y-5*y^2.

%C Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by _M. F. Hasler_, Jan 27 2016]

%C Also primes represented by the improperly equivalent form 5*x^2+7*x*y-9*y^2. - _Juan Arias-de-Reyna_, Mar 17 2011

%C 36*a(n) has the form z^2 - 229*y^2, where z = 18*x+7*y. [_Bruno Berselli_, Jun 25 2014]

%C Appears to be the complement of A141166 in A268155, primes that are squares mod 229. - _M. F. Hasler_, Jan 27 2016

%D Z. I. Borevich and I. R. Shafarevich, Number Theory

%D D. B. Zagier, Zetafunktionen und quadratische Körper

%H Juan Arias-de-Reyna, <a href="/A141165/b141165.txt">Table of n, a(n) for n = 1..10000</a>

%H Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BinaryQuadraticForms#Implementation">Binary Quadratic Forms</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%e a(10)=97 because we can write 97= 9*3^2+7*3*1-5*1^2

%t q := 9*x^2 + 7*x*y - 5*y^2; pmax = 1000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (expansion coeff. for maxima *); prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]]}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", " xmax = ", xmax, " ymin = ", ymin, " ymax = ", ymax ]]; A141165 = prms (* _Jean-François Alcover_, Oct 26 2016 *)

%o (PARI) is_A141165(p)=qfbsolve(Qfb(9,7,-5),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. - _M. F. Hasler_, Jan 27 2016

%o (Sage) # uses[binaryQF]

%o # The function binaryQF is defined in the link 'Binary Quadratic Forms'.

%o Q = binaryQF([9, 7, -5])

%o print(Q.represented_positives(911, 'prime')) # _Peter Luschny_, Oct 26 2016

%Y Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141166 (d=229).

%Y For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

%K nonn

%O 1,1

%A Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008