login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of linear arrangements of n blue, n red and n green items such that first and last elements are blue but there are no adjacent items of the same color.
2

%I #15 May 10 2020 06:04:54

%S 0,2,14,96,664,4660,33144,238448,1732112,12685428,93552700,694072720,

%T 5176136640,38777105120,291661779920,2201518518240,16670124621472,

%U 126586920736564,963723103197516,7354034055776864,56236603567496720

%N Number of linear arrangements of n blue, n red and n green items such that first and last elements are blue but there are no adjacent items of the same color.

%H Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI scripts for various problems</a>

%H L. Q. Eifler, K. B. Reid Jr., D. P. Roselle, <a href="http://dx.doi.org/10.1007/BF01819761">Sequences with adjacent elements unequal</a>, Aequationes Mathematicae 6 (2-3), 1971.

%F a(n) = A110711(n) / 3.

%F a(n) = Sum[k=0..[n/2]] binomial(n-1,2k) * binomial(2k,k) * binomial(n-1+k,k+1) * 2^(n-1-2k).

%F G.f.: (2*x-1)^2*(1-8*x)^(-4/3)*(x+1)^(-8/3)*hypergeom([4/3, 4/3],[2],27*x^2/((8*x-1)*(x+1)^2))-(1-8*x)^(-1/3)*(x+1)^(-2/3)*hypergeom([1/3, 1/3],[1],27*x^2/((8*x-1)*(x+1)^2)). - _Mark van Hoeij_, May 14 2013

%F Conjecture: -(n+1)*(n-2)*a(n) +(7*n^2-13*n+4)*a(n-1) +8*(n-2)^2*a(n-2)=0. - _R. J. Mathar_, Jul 23 2014

%o (PARI) { a(n) = sum(k=0,n\2, binomial(n-1,2*k) * binomial(2*k,k) * binomial(n-1+k,k+1) * 2^(n-1-2*k) ) }

%Y Cf. A110706, A110707, A110710, A110711, A141147, A141148.

%K nonn

%O 1,2

%A _Max Alekseyev_, Jun 10 2008