login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies A(A(A(A(A(A(x)))))) = x + 36*x^2.
4

%I #16 May 05 2024 08:54:39

%S 1,6,-180,8640,-498960,31434480,-2055943296,135216506304,

%T -8720972739072,538646016002688,-31024094144060160,

%U 1609593032459782656,-71392972690228672512,2461961564459510280192,-51302015299696881770496,-415041229811424576835584

%N G.f. A(x) satisfies A(A(A(A(A(A(x)))))) = x + 36*x^2.

%H Seiichi Manyama, <a href="/A141121/b141121.txt">Table of n, a(n) for n = 1..200</a>

%F From _Seiichi Manyama_, May 04 2024: (Start)

%F Define the sequence b(n,m) as follows. If n<m, b(n,m) = 0, else if n=m, b(n,m) = 1, otherwise b(n,m) = 1/6 * ( 36^(n-m) * binomial(m,n-m) - Sum_{l=m+1..n-1} (b(n,l) + Sum_{k=l..n} (b(n,k) + Sum_{j=k..n} (b(n,j) + Sum_{i=j..n} (b(n,i) + Sum_{h=i..n} b(n,h) * b(h,i)) * b(i,j)) * b(j,k)) * b(k,l)) * b(l,m) ). a(n) = b(n,1).

%F A(A(x)) = F(4*x)/4, where F(x) is the g.f. for A141118.

%F A(A(A(x))) = G(9*x)/9, where G(x) is the g.f. for A027436. (End)

%e G.f.: A(x) = x + 6*x^2 - 180*x^3 + 8640*x^4 - 498960*x^5 +...

%e A(A(x)) = x + 12*x^2 - 288*x^3 + 12096*x^4 - 622080*x^5 +...

%e A(A(A(x))) = x + 18*x^2 - 324*x^3 + 11664*x^4 - 524880*x^5 +...

%e A(A(A(A(x)))) = x + 24*x^2 - 288*x^3 + 8640*x^4 - 331776*x^5 +...

%e A(A(A(A(A(x))))) = x + 30*x^2 - 180*x^3 + 4320*x^4 - 136080*x^5 +...

%o (PARI) {a(n, m=6)=local(F=x+m*x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F+((-polcoeff(G, k))/m)*x^k); return(polcoeff(F, n, x)))}

%Y Cf. A027436, A141118, A141119, A141120.

%K sign

%O 1,2

%A _Paul D. Hanna_, Jun 05 2008