login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of arc length of the cornoid curve.
0

%I #13 Nov 23 2020 08:11:15

%S 1,0,6,0,1,7,0,2,9,5,3,7,4,2,3,6,0,5,1,0,3,3,0,4,7,9,1,8,7,2,1,5,4,1,

%T 3,5,9,4,1,1,2,7,6,1,0,0,7,7,9,7,6,9,7,9,8,1,6,2,9,6,0,9,1,5,1,3,6,2,

%U 0,9,7,6,3,9,2,5,4,6,3,4,4,8,7,3,7,7,2,2,9,0,5,8,2,3,7,0,5,9,9,1,9,7,9,3,2

%N Decimal expansion of arc length of the cornoid curve.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Cornoid.html">Cornoid</a>

%F 4*(EllipticE[ -2] - 3*EllipticK[ -2] + 3*EllipticPi[1/4, -2])

%e 10.601702953742360510...

%p Re(evalf(4*(EllipticE(I*sqrt(2)) - 3*EllipticK(I*sqrt(2)) + 3*EllipticPi(1/4, I*sqrt(2))), 120)); # _Vaclav Kotesovec_, Apr 22 2015

%t RealDigits[N[4*(EllipticE[-2]-3*EllipticK[-2]+3*EllipticPi[1/4,-2]),105]][[1]] (* _Vaclav Kotesovec_, Apr 22 2015 *)

%t RealDigits[N[(4 (9 EllipticE[2/3] - EllipticK[2/3] + EllipticPi[3/4, 2/3]))/(3 Sqrt[3]), 105]][[1]] (* _Jan Mangaldan_, Nov 22 2020 *)

%K nonn,cons

%O 2,3

%A _Eric W. Weisstein_, Jun 02 2008