Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 14 2019 10:01:19
%S 1,2,12,24,12,24,56,78,48,42,184,24,152,46,260,48,102,304,110,126,60,
%T 276,250,630,24,12,24,1272,72,1156,294,476,24,676,580,374,60,286,740,
%U 644,24,1206,12,1520,1942,1880,2302,24,896,498,884,932,1124,72,1100,48
%N a(n)=abs(p(n)*p(n+3)-p(n+1)*p(n+2)), where p(n)=n-th prime.
%H Harvey P. Dale, <a href="/A141079/b141079.txt">Table of n, a(n) for n = 1..1000</a>
%e If n=1, then a(1)=abs(p(1)*p(4)-p(2)*p(3))=abs(2*7-3*5)=abs(14-15)=1.
%e If n=2, then a(2)=abs(p(2)*p(5)-p(3)*p(4))=abs(3*11-5*7)=abs(33-35)=2.
%e If n=5, then a(5)=abs(p(5)*p(8)-p(6)*p(7))=abs(11*19-13*17)=abs(209-221)=12, etc.
%p p:=ithprime: seq(abs(p(n)*p(n+3)-p(n+1)*p(n+2)),n=1..60); # _Emeric Deutsch_, Aug 27 2008
%t Abs[#[[1]]*#[[4]]-#[[2]]#[[3]]]&/@Partition[Prime[Range[60]],4,1] (* _Harvey P. Dale_, May 14 2019 *)
%K nonn
%O 1,2
%A _Juri-Stepan Gerasimov_, Aug 05 2008
%E Corrected and extended by _Emeric Deutsch_, Aug 27 2008