login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Abelian cubes of length 3n over an alphabet of size 3. An Abelian cube is a string of the form x x' x'' with |x| = |x'| = |x''| and x is a permutation of x' and x''.
6

%I #32 Jun 18 2022 14:19:17

%S 1,3,27,381,6219,111753,2151549,43497891,912018123,19671397617,

%T 434005899777,9754118112951,222621127928109,5147503311510927,

%U 120355825553777043,2841378806367492381,67648182142185172683,1622612550613755130497,39178199253650491044441

%N Number of Abelian cubes of length 3n over an alphabet of size 3. An Abelian cube is a string of the form x x' x'' with |x| = |x'| = |x''| and x is a permutation of x' and x''.

%C Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for primes p >= 5 and positive integers n and k. Extending the sequence to negative n via a(-n) = Sum_{k = 0..n} C(-n,k)^3 * Sum_{j = 0..k} C(k,j)^3 produces the sequence [-1, 255, -53893, 14396623, -4388536251, 1461954981315, -518606406878589, ...] that appears to satisfy the same supercongruences. - _Peter Bala_, Apr 27 2022

%H Alois P. Heinz, <a href="/A141057/b141057.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = sum of (n!/(n1)! (n2)! (n3!))^3 over all nonnegative n1, n2, n3 such that n1+n2+n3 = n.

%F G.f.: Sum_{n>=0} a(n)*x^n/n!^3 = [ Sum_{n>=0} x^n/n!^3 ]^3. - _Paul D. Hanna_, Jan 19 2011

%F a(n) = Sum_{k=0..n} C(n,k)^3 * Sum_{j=0..k} C(k,j)^3 = Sum_{k=0..n} C(n,k)^3*A000172(k). - _Paul D. Hanna_, Jan 20 2011

%F a(n) ~ 3^(3*n+2) / (4 * Pi^2 * n^2). - _Vaclav Kotesovec_, Sep 04 2014

%F a(n) = (n!)^3 * [x^n] hypergeom([], [1, 1], x)^3. - _Peter Luschny_, May 31 2017

%e a(1) = 3 as the Abelian cubes are aaa, bbb, ccc.

%e G.f.: A(x) = 1 + 3*x + 27*x^2/2!^3 + 381*x^3/3!^3 + 6219*x^4/4!^3 +...

%e A(x) = [1 + x + x^2/2!^3 + x^3/3!^3 + x^4/4!^3 +...]^3. - _Paul D. Hanna_

%p a:= proc(n) option remember; `if`(n<3, [1, 3, 27][n+1],

%p ((567*n^6-3213*n^5+7083*n^4-7920*n^3+4968*n^2-1680*n+240)*a(n-1)

%p -3*(3*n-4)*(63*n^5-399*n^4+1039*n^3-1380*n^2+920*n-240)*a(n-2)

%p +729*(21*n^2-35*n+15)*(n-2)^4*a(n-3))/(n^4*(21*n^2-77*n+71)))

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 25 2013

%p A141057_list := proc(len) series(hypergeom([], [1, 1], x)^3, x, len);

%p seq((n!)^3*coeff(%, x, n), n=0..len-1) end:

%p A141057_list(19); # _Peter Luschny_, May 31 2017

%t a[n_] := Sum[Binomial[n, k]^3 HypergeometricPFQ[{-k, -k, -k}, {1, 1}, -1], {k, 0, n}]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Jun 27 2019 *)

%o (PARI) {a(n)=if(n<0,0,n!^3*polcoeff(sum(m=0,n,x^m/m!^3+x*O(x^n))^3,n))}

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)^3*sum(j=0,k,binomial(k,j)^3))}

%o (PARI) N=33; x='x+O('x^N)

%o Vec(serlaplace(serlaplace(serlaplace(sum(n=0,N,x^n/(n!^3)))^3))) /* show terms */

%Y Cf. A000172 (Franel numbers), A002893.

%K nonn

%O 0,2

%A _Jeffrey Shallit_, Aug 01 2008

%E Extended by _Paul D. Hanna_, Jan 19 2011

%E Offset corrected by _Alois P. Heinz_, May 25 2013