Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Dec 18 2019 08:56:28
%S 1,1,1,1,2,1,1,4,2,1,1,8,4,2,1,1,16,8,4,2,1,1,32,16,8,4,2,1,1,63,33,
%T 16,8,4,2,1,1,124,67,33,16,8,4,2,1,1,244,136,67,33,16,8,4,2,1,1,480,
%U 276,136,67,33,16,8,4,2,1,1,944,560,276,136,67,33,16,8,4,2,1
%N Pascal-like triangle with index of asymmetry y = 4 and index of obliqueness z = 0.
%C The left column is set to 1. The four rightmost columns start with powers of 2:
%C T(n, 0) = T(n, n)=1; T(n, n-1)=2; T(n, n-2)=4; T(n, n-3)=8; T(n, n-4)=16.
%C Recurrence: T(n, k) = T(n-1, k) + T(n-2, k) + T(n-3, k) + T(n-4, k) + T(n-5, k) + T(n-5,k-1), k = 1..n-5.
%C From _Petros Hadjicostas_, Jun 14 2019: (Start)
%C In the attached photograph we see that the index of asymmetry is denoted by s (rather than y) and the index of obliqueness by e (rather than z).
%C The general recurrence is G(n+s+2, k) = G(n+1, k-e*s+e-1) + Sum_{1 <= m <= s+1} G(n+m, k-e*s+m*e-2*e) for n >= 0 with k = 1..(n+1) when e = 0 and k = (s+1)..(n+s+1) when e = 1. The initial conditions are G(n+x+1, n-e*n+e*x-e+1) = 2^x for x=0..s and n >= 0. There is one more initial condition, namely, G(n, e*n) = 1 for n >= 0.
%C For s = 0, we get Pascal's triangle A007318. For s = 1, we get A140998 (e = 0) and A140993 (e = 1). For s = 2, we get A140997 (e = 0) and A140994 (e = 1). For s = 3, we get A140996 (e = 0) and A140995 (e = 1). For s = 4, we have the current array (with e = 0) and array A141021 (with e = 1). In some of these arrays, the indices n and k are sometimes shifted.
%C (End)
%H Juri-Stepan Gerasimov, <a href="/A140998/a140998.jpg">Stepan's triangles and Pascal's triangle are connected by the recurrence relation ...</a>
%F From _Petros Hadjicostas_, Jun 14 2019: (Start)
%F T(n, k) = A141021(n, n-k) for 0 <= k <= n.
%F Bivariate g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1 - x - x^2 - x^3 - x^4 - x^5 + y*x^2*(1 + x + x^2 + x^4)) / ((1 - x) * (1 - x*y) * (1 - x - x^2 - x^3 - x^4 - x^5 - x^5*y)).
%F Differentiating the bivariate w.r.t. y and setting y = 0, we get the g.f. of the column k = 1: x/((-1 + x)*(x^5 + x^4 + x^3 + x^2 + x - 1)). This is the g.f. of a shifted version of sequence A001949.
%F (End)
%e Pascal-like triangle with y = 4 and z = 0 begins as follows:
%e 1
%e 1 1
%e 1 2 1
%e 1 4 2 1
%e 1 8 4 2 1
%e 1 16 8 4 2 1
%e 1 32 16 8 4 2 1
%e 1 63 33 16 8 4 2 1
%e 1 124 67 33 16 8 4 2 1
%e 1 244 136 67 33 16 8 4 2 1
%e 1 480 276 136 67 33 16 8 4 2 1
%e 1 944 560 276 136 67 33 16 8 4 2 1
%e ...
%p A141020 := proc(n,k) option remember ; if k<0 or k>n then 0 ; elif k=0 or k=n then 1 ; elif k=n-1 then 2 ; elif k=n-2 then 4 ; elif k=n-3 then 8 ; elif k=n-4 then 16 ; else procname(n-1,k) +procname(n-2,k)+procname(n-3,k)+procname(n-4,k) +procname(n-5,k)+procname(n-5,k-1) ; fi; end:
%p for n from 0 to 20 do for k from 0 to n do printf("%d,",A141020(n,k)) ; od: od: # _R. J. Mathar_, Sep 19 2008
%t T[n_, k_] := T[n, k] = Which[k < 0 || k > n, 0, k == 0 || k == n, 1, k == n-1, 2, k == n-2, 4, k == n-3, 8, k == n-4, 16, True, T[n-1, k] + T[n-2, k] + T[n-3, k] + T[n-4, k] + T[n-5, k] + T[n-5, k-1]];
%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 18 2019, after _R. J. Mathar_ *)
%Y Cf. A001949, A007318, A140993, A140994, A140995, A140996, A140997, A140998, A141021, A141031, A141064, A141065, A141066, A141067, A141069, A141070, A141072, A141073.
%K nonn,tabl
%O 0,5
%A _Juri-Stepan Gerasimov_, Jul 11 2008
%E Partially edited by _N. J. A. Sloane_, Jul 18 2008
%E Recurrence rewritten by _R. J. Mathar_, Sep 19 2008