Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Oct 28 2023 04:08:50
%S 1,5,11,18,29,55,55,72,96,145,131,198,181,275,319,288,305,480,379,522,
%T 605,655,551,792,720,905,864,990,869,1595,991,1152,1441,1525,1595,
%U 1728,1405,1895,1991,2088,1721,3025,1891,2358,2784,2755,2255,3168,2688,3600
%N Mobius transform of A000082.
%C Dirichlet convolution of the sequence of (absolute values of A055615) and A007434. - _R. J. Mathar_, Feb 27 2011
%H Alois P. Heinz, <a href="/A140697/b140697.txt">Table of n, a(n) for n = 1..10000</a>
%F Dirichlet g.f.: zeta(s-1)*zeta(s-2)/(zeta(2s-2)*zeta(s)). - _R. J. Mathar_, Feb 27 2011
%F Sum_{k=1..n} a(k) ~ 5*n^3 / (Pi^2 * zeta(3)). - _Vaclav Kotesovec_, Jan 11 2019
%F Multiplicative with a(p) = p*(p+1) - 1, and a(p^e) = (p-1)*(p+1)^2*p^(2*e-3) for e >= 2. - _Amiram Eldar_, Oct 28 2023
%e a(4) = 18 = (0, -1, 0, 1) dot (1, 6, 12, 24), where (0, -1 0, 1) = row 4 of A054525 and A000082 = (1, 6, 12, 24, 30, 72,...).
%p with (numtheory): a:= n-> add (k^2* mul(1+1/p, p=factorset(k)) *mobius (n/k), k=divisors(n)): seq (a(n), n=1..60); # _Alois P. Heinz_, Aug 28 2008
%t a[n_] := Sum[ k^2*Product[ 1+1/p, {p, FactorInteger[k][[All, 1]]}]* MoebiusMu[n/k], {k, Divisors[n]}] - MoebiusMu[n]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Sep 03 2012, after _Alois P. Heinz_ *)
%t f[p_, e_] := (p - 1)*(p + 1)^2*p^(2*e - 3); f[p_, 1] := p*(p + 1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 28 2023 *)
%Y Cf. A000082, A002117, A007434, A054525, A055615.
%K nonn,easy,mult
%O 1,2
%A _Gary W. Adamson_, May 23 2008
%E Definition corrected by _N. J. A. Sloane_, Jul 28 2008
%E More terms from _Alois P. Heinz_, Aug 28 2008