login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(3*n + 13)/2.
16

%I #36 Jul 06 2024 10:30:47

%S 0,8,19,33,50,70,93,119,148,180,215,253,294,338,385,435,488,544,603,

%T 665,730,798,869,943,1020,1100,1183,1269,1358,1450,1545,1643,1744,

%U 1848,1955,2065,2178,2294,2413,2535,2660,2788,2919,3053

%N a(n) = n*(3*n + 13)/2.

%H G. C. Greubel, <a href="/A140672/b140672.txt">Table of n, a(n) for n = 0..5000</a>

%H Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 5.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1).

%F a(n) = (3*n^2 + 13*n)/2.

%F a(n) = 3*n + a(n-1) + 5 for n>0, a(0)=0. - _Vincenzo Librandi_, Aug 03 2010

%F a(0)=0, a(1)=8, a(2)=19; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Harvey P. Dale_, Dec 16 2011

%F G.f.: x*(8 - 5*x)/(1 - x)^3. - _Arkadiusz Wesolowski_, Dec 24 2011

%F E.g.f.: (1/2)*(3*x^2 +16*x)*exp(x). - _G. C. Greubel_, Jul 17 2017

%t Table[n (3 n + 13)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 8, 19}, 50] (* _Harvey P. Dale_, Dec 16 2011 *)

%o (PARI) a(n)=n*(3*n+13)/2 \\ _Charles R Greathouse IV_, Sep 24 2015

%o (Magma) [(3*n^2 + 13*n)/2 : n in [0..80]]; // _Wesley Ivan Hurt_, Dec 27 2023

%Y The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

%K easy,nonn

%O 0,2

%A _Omar E. Pol_, May 22 2008