login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + A140664(n).
1

%I #9 Feb 14 2019 07:46:23

%S 2,0,0,4,0,7,0,8,9,11,0,12,0,15,16,16,0,18,0,20,22,23,0,24,25,27,27,

%T 28,0,29,0,32,34,35,36,36,0,39,40,40,0,41,0,44,45,47,0,48,49,50,52,52,

%U 0,54,56,56,58,59,0,60,0,63,63,64,66,65,0,68,70,69,0,72,0,75,75,76,78,77,0,80,81,83,0,84,86,87,88,88,0

%N a(n) = n + A140664(n).

%C For n>1, a(n) = n iff mu(n) = 0; 0 if n is prime; and (n+1) iff mu(n) = 1.

%H Antti Karttunen, <a href="/A140668/b140668.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = n + A140664(n), where A140664 = (1, -2, -3, 0, -5, 1, -7, 0, 0, 1,...)

%e a(4) = 4 = 4 + A140664(4) = 4 + 0.

%t Table[Exp[MangoldtLambda[n]]*MoebiusMu[n] + n, {n, 100}] (* _G. C. Greubel_, Feb 13 2019 *)

%o (PARI)

%o A014963(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ From A014963

%o A140664(n) = (moebius(n)*A014963(n));

%o A140668(n) = (n+A140664(n)); \\ _Antti Karttunen_, Feb 13 2019

%o (Sage)

%o def A140668(n): return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))*moebius(n) + n

%o [A140668(n) for n in (1..100)] # _G. C. Greubel_, Feb 13 2019

%Y Cf. A140664, A008683.

%K nonn

%O 1,1

%A _Gary W. Adamson_ and _Mats Granvik_, May 20 2008

%E More terms from _Antti Karttunen_, Feb 13 2019