login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A triangle of coefficients of the difference of prime cyclotomic doubled polynomials: p(x,n)=(c(x,Prime[n])-c(x,2*Prime[n]))/x.
0

%I #7 Aug 05 2019 19:26:03

%S 1,-1,2,2,0,2,2,0,2,0,2,2,0,2,0,2,0,2,0,2,2,0,2,0,2,0,2,0,2,0,2,2,0,2,

%T 0,2,0,2,0,2,0,2,0,2,0,2,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,2,0,2,0,2,

%U 0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2,0,2

%N A triangle of coefficients of the difference of prime cyclotomic doubled polynomials: p(x,n)=(c(x,Prime[n])-c(x,2*Prime[n]))/x.

%C Row sums are: {0, 2, 4, 6, 10, 12, 16, 18, 22, 28, ...}

%C The factor x is used instead of 2x to get an integer n=1 term.

%C p(x,n)/2 are related to the double product:two primes n,m such that

%C Cyclotomic[Prime[n], x]* Cyclotomic[2*Prime[n]=(Cyclotomic[Prime[m], x] - Cyclotomic[2*Prime[m], x])/(2*x)

%F c(x,n)=CyclotomicPolynomial; c(x,Prime[n])=(x^Prime[n]-1)/(x-1); p(x,n)=(c(x,Prime[n])-c(x,2*Prime[n]))/x; a(n,m)=Coefficients(p(x,n))

%e {1, -1},

%e {2},

%e {2, 0, 2},

%e {2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2},

%e {2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2}

%t Clear[p, x, n] p[x_, n_] = (Cyclotomic[Prime[n], x] - Cyclotomic[2*Prime[n], x])/x; Table[ExpandAll[p[x, n]], {n, 1, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 1, 10}]; Flatten[a]

%K tabf,uned,sign

%O 1,3

%A _Roger L. Bagula_ and _Gary W. Adamson_, Jul 11 2008