login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140601
Values of m such that binomial(m, a) + binomial(m, b) divides binomial(m, a + b) for some distinct nonnegative integers a and b with a + b <= m.
2
19, 34, 41, 89, 104, 359, 398, 495, 527, 1845, 2309, 2729, 3539, 4619, 8644, 12923, 14135, 15774, 36098, 36569
OFFSET
1,1
COMMENTS
This sequence was first suggested by Stefan Steinerberger, who conjectures that there are infinitely many terms.
For every fixed pair of integers a,b, there exists only a finite number of suitable values of m. - Max Alekseyev
For all known entries (up to a(20)), there is exactly one pair (a,b) which satisfies the required conditions. In every case b-a is either 1 or 2. See sequence A140602 for values with b-a = 1 and A140603 for b-a = 2. Related open questions: (1) Must the pair (a,b) for a given a(n) be unique? (2) Does every solution have b-a <= 2?
EXAMPLE
C(19,3) + C(19,5) divides C(19,8)
C(34,6) + C(34,7) divides C(34,13)
C(41,5) + C(41,7) divides C(41,12)
C(89,7) + C(89,8) divides C(89,15)
C(104,3) + C(104,4) divides C(104,7)
C(359,5) + C(359,6) divides C(359,11)
C(398,20) + C(398,21) divides C(398,41)
C(495,12) + C(495,14) divides C(495,26)
C(527,7) + C(527,9) divides C(527,16)
C(1845,15) + C(1845,17) divides C(1845,32)
C(2309,5) + C(2309,6) divides C(2309,11)
C(2729,19) + C(2729,20) divides C(2729,39)
C(3539,35) + C(3539,36) divides C(3539,71)
C(4619,11) + C(4619,12) divides C(4619,23)
C(8644,18) + C(8644,19) divides C(8644,37)
C(12923,34) + C(12923,36) divides C(12923,70)
C(14135,30) + C(14135,31) divides C(14135,61)
C(15774,24) + C(15774,26) divides C(15774,50)
C(36098,34) + C(36098,36) divides C(36098,70), and C(36569,47) + C(36569,48) divides C(36569,95). - Robin Visser, Sep 30 2023
PROG
(Sage)
for m in range(2, 100000):
for a in range(0, m//2):
for b in range(a+1, m-a+1):
if (binomial(m, a+b)%(binomial(m, a)+binomial(m, b)) == 0):
print(m) # Robin Visser, Sep 30 2023
CROSSREFS
Sequence in context: A146438 A146571 A235869 * A031206 A214231 A242847
KEYWORD
hard,more,nonn
AUTHOR
EXTENSIONS
Edited by Max Alekseyev, Jun 16 2010
a(19)-a(20) from Robin Visser, Sep 30 2023
STATUS
approved