login
A140458
Primes p such that p^2 is a sum of 5 successive primes.
1
31, 41, 137, 277, 283, 313, 353, 467, 659, 937, 1201, 1291, 1409, 1427, 1543, 1567, 1613, 1669, 1933, 2243, 2503, 2617, 2957, 3559, 3607, 3631, 4153, 4241, 5569, 5843, 6037, 6067
OFFSET
1,1
EXAMPLE
181+191+193+197+199=31^2, 317+331+337+347+349=41^2, 3733+3739+3761+3767+3769=137^2,...
MATHEMATICA
a = {}; For[n = 1, n < 10^4, n++, p1 = Prime[n]; p2 = Prime[n + 1]; p3 = Prime[n + 2]; p4 = Prime[n + 3]; p5 = Prime[n + 4]; p = (p1 + p2 + p3 + p4 + p5)^(1/2); If[PrimeQ[p], AppendTo[a, p]]]; a
Sqrt[# ]&/@Select[Total/@Partition[Prime[Range[500000]], 5, 1], PrimeQ[ Sqrt[#]]&] (* Harvey P. Dale, Nov 12 2011 *)
Select[Sqrt[Total/@Partition[Prime[Range[500000]], 5, 1]], PrimeQ] (* Zak Seidov, Feb 08 2012 *)
CROSSREFS
Sequence in context: A040987 A040180 A158754 * A364149 A101520 A225862
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Nov 12 2011
STATUS
approved