login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of indecomposable involutions of length n.
6

%I #55 Oct 27 2023 21:45:33

%S 1,1,1,3,7,23,71,255,911,3535,13903,57663,243871,1072031,4812575,

%T 22278399,105300287,510764095,2527547455,12794891007,66012404863,

%U 347599231103,1863520447103,10178746224639,56548686860543,319628408814847,1835814213846271

%N a(n) is the number of indecomposable involutions of length n.

%C An involution is a self-inverse permutation. A permutation of [n] = {1, 2, ..., n} is indecomposable if it does not fix [j] for any 0 < j < n.

%C From _Paul Barry_, Nov 26 2009: (Start)

%C G.f. of a(n+1) is 1/(1-x-2x^2/(1-x-3x^2/(1-x-4x^2/(1-x-5x^2/(1-...))))) (continued fraction).

%C a(n+1) is the binomial transform of the aeration of A000698(n+1). Hankel transform of a(n+1) is A000178(n+1). (End)

%C From _Groux Roland_, Mar 17 2011: (Start)

%C a(n) is the INVERTi transform of A000085(n+1)

%C a(n) is also the moment of order n for the density: sqrt(2/Pi^3)*exp((x-1)^2/2)/(1-(erf(I*(x-1)/sqrt(2)))^2).

%C More generally, if c(n)=int(x^n*rho(x),x=a..b) with rho(x) a probability density function of class C1, then the INVERTi transform of (c(1),..c(n),..) starting at n=2 gives the moments of mu(x) = rho(x) / ((s(x))^2+(Pi*rho(x))^2) with s(x) = int( rho'(t)*log(abs(1-t/x)), t=a..b) + rho(b)*log(x/(b-x)) + rho(a)*log((x-a)/x).

%C (End)

%C For n>1 sum over all Motzkin paths of length n-2 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - _Alois P. Heinz_, May 24 2015

%H Alois P. Heinz, <a href="/A140456/b140456.txt">Table of n, a(n) for n = 1..800</a> (terms n = 1..50 from Joel B. Lewis)

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%H Claudia Malvenuto and Christophe Reutenauer, <a href="https://arxiv.org/abs/2010.06731">Primitive Elements of the Hopf Algebras of Tableaux</a>, arXiv:2010.06731 [math.CO], 2020.

%F G.f.: 1 - 1/I(x), where I(x) is the ordinary generating function for involutions (A000085).

%F G.f.: Q(0) +1/x, where Q(k) = 1 - 1/x - (k+1)/Q(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Sep 16 2013

%e The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.

%e G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...

%p b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,

%p `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)

%p + b(x-1, y, false) + b(x-1, y+1, true)))

%p end:

%p a:= n-> `if`(n=1, 1, b(n-2, 0, false)):

%p seq(a(n), n=1..35); # _Alois P. Heinz_, May 24 2015

%t CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]

%Y Cf. A000085 (involutions), A000698 (indecomposable fixed-point free involutions), and A003319 (indecomposable permutations).

%Y Cf. A001006, A258306.

%K nonn

%O 1,4

%A _Joel B. Lewis_, Jul 22 2008