login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140303
Triangle T(n,k) = 3^(n-k) read by rows.
1
1, 3, 1, 9, 3, 1, 27, 9, 3, 1, 81, 27, 9, 3, 1, 243, 81, 27, 9, 3, 1, 729, 243, 81, 27, 9, 3, 1, 2187, 729, 243, 81, 27, 9, 3, 1, 6561, 2187, 729, 243, 81, 27, 9, 3, 1, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1, 59049, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1
OFFSET
0,2
COMMENTS
Row sums are: 1, 4, 13, 40, 121, 364, .. A003462(n+1).
REFERENCES
Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 232
FORMULA
T(n,k) = A000244(n-k) . - R. J. Mathar, Sep 12 2013
EXAMPLE
1;
3, 1;
9, 3, 1;
27, 9, 3, 1;
81, 27, 9, 3, 1;
243, 81, 27, 9, 3, 1;
729, 243, 81, 27, 9, 3, 1;
2187, 729, 243, 81, 27, 9, 3, 1;
6561, 2187, 729, 243, 81, 27, 9, 3, 1;
19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1;
59049, 19683, 6561, 2187, 729, 243, 81, 27, 9, 3, 1;
MATHEMATICA
Clear[p, a] a = 3; p[x, 0] = 1; p[x_, n_] := p[x, n] = Sum[a^i*x^(n - i), {i, 0, n}]; Table[p[x, n], {n, 0, 10}]; a0 = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a0] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]
Table[3^(n-k), {n, 15}, {k, n}]//Flatten (* Harvey P. Dale, Nov 14 2021 *)
CROSSREFS
Cf. A130321.
Sequence in context: A021762 A019736 A213595 * A249266 A309057 A246269
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved