Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jul 29 2022 09:57:14
%S 1,5,18,124,866,7622,72256,749892,8229721
%N Number of isomorphism classes of smooth toric Fano n-folds (or, equivalently, regular Fano n-topes).
%H Victor V. Batyrev, <a href="http://mi.mathnet.ru/eng/izv1581">Toric Fano threefolds</a>, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 704-717, 927.
%H Yang-Hui He, Rak-Kyeong Seong, and Shing-Tung Yau, <a href="https://arxiv.org/abs/1704.03462">Calabi-Yau Volumes and Reflexive Polytopes</a>, arXiv:1704.03462 [hep-th], 2017.
%H Maximillian Kreuzer and Benjamin Nill, <a href="http://arxiv.org/abs/math/0702890">Classification of toric fano 5-folds</a>, arXiv:math/0702890 [math.AG], 2007.
%H Benjamin Lorenz and Benjamin Nill, <a href="https://polymake.org/polytopes/blorenz/smoothgorenstein/">Smooth Gorenstein polytopes</a>
%H Mikkel Oebro, <a href="http://arxiv.org/abs/0704.0049">An algorithm for the classification of smooth Fano polytopes</a>, arXiv:0704.0049 [math.CO], 2007.
%H Mikkel Oebro, <a href="https://web.archive.org/web/20070609194935/http://home.imf.au.dk/oebro/">Text-format and PALP-friendly files containing the classifications up to n=7</a>
%H Andreas Paffenholz, <a href="https://polymake.org/polytopes/paffenholz/www/fano.html">Smooth Reflexive Lattice Polytopes</a>
%Y See A090045 for all the reflexive polytopes. Cf. A127709.
%K hard,more,nonn
%O 1,2
%A Alexander M Kasprzyk (kasprzyk(AT)unb.ca), Jun 23 2008
%E a(9) from _F. Chapoton_, Mar 13 2014