Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 27 2023 15:23:44
%S 1,3,4,5,6,7,8,7,7,9,12,10,14,11,10,9,18,11,20,12,12,15,24,13,11,17,
%T 10,14,30,15,32,11,16,21,14,15,38,23,18,15,42,17,44,18,14,27,48,16,15,
%U 15,22,20,54,15,18,17,24,33,60,20,62,35,16,13,20,21,68,24,28,19,72,19,74
%N Inverse Mobius transform of A014963.
%H Jodi Spitz, <a href="/A140255/b140255.txt">Table of n, a(n) for n = 1..5000</a>
%F A051731 as an infinite lower triangular matrix * A014963 as a vector.
%F Equals row sums of triangle A140256. - _Gary W. Adamson_, May 16 2008
%F G.f.: Sum_{k>=1} M(k)*x^k/(1 - x^k), where M(k) is the exponential of Mangoldt function (A014963). - _Ilya Gutkovskiy_, Jan 16 2017
%e a(4) = 5 = (1, 1, 0, 1) dot (1, 2, 3, 2) = (1 + 2 + 0 + 2); where (1, 1, 0, 1) = row 4 of triangle A051731 and (1, 2, 3, 2) = the first 4 terms of A014963.
%o (PARI)
%o expmangoldt(n)=ispower(n, , &n); if(isprime(n), n, 1);
%o a(n) = sumdiv(n, d, expmangoldt(d)) \\ _Jodi Spitz_, Apr 11 2023
%Y Cf. A014963, A051731, A140254.
%Y Cf. A140256.
%K nonn
%O 1,2
%A _Gary W. Adamson_ and _Mats Granvik_, May 16 2008
%E More terms from _R. J. Mathar_, Jan 19 2009