login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^4 if n is even.
2

%I #12 Jan 02 2024 09:01:09

%S 1,17,20,276,281,1577,1584,5680,5689,15689,15700,36436,36449,74865,

%T 74880,140416,140433,245409,245428,405428,405449,639705,639728,971504,

%U 971529,1428505,1428532,2043188,2043217,2853217,2853248,3901824,3901857

%N a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^4 if n is even.

%H Harvey P. Dale, <a href="/A140146/b140146.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: -x*(x^2+1)*(x^6-16*x^5-3*x^4-160*x^3+3*x^2-16*x-1)/((1+x)^5*(x-1)^6). [From _R. J. Mathar_, Feb 22 2009]

%t a = {}; r = 1; s = 4; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a (*Artur Jasinski*)

%t nxt[{n_,a_}]:={n+1,If[OddQ[n+1],a+n+1,a+(n+1)^4]}; Transpose[NestList[nxt,{1,1},40]][[2]] (* _Harvey P. Dale_, Mar 19 2013 *)

%Y Cf. A000027, A000217, A000330, A000537, A000538, A000539, A136047, A140113.

%K nonn

%O 1,2

%A _Artur Jasinski_, May 12 2008