%I #17 Sep 08 2022 08:45:34
%S 139,199,439,859,1039,1231,1291,1459,1531,1699,1951,2131,2239,2539,
%T 2551,2791,3331,3559,3631,4339,4651,4759,5431,5659,5851,6691,6991,
%U 7159,7411,7591,7699,8011,8839,9091,9439,9931,10111,10531,10891,11059
%N Primes of the form 10x^2+10xy+139y^2.
%C Discriminant=-5460. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A140019/b140019.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {139, 199, 391, 439, 451, 859, 979, 1039, 1231, 1291, 1459, 1531, 1699, 1819, 1951, 2071, 2131, 2239, 2539, 2551, 2791, 2911, 3331, 3379, 3559, 3631, 3799, 3979, 4339, 4471, 4651, 4759, 4819, 4891, 5071, 5431} (mod 5460).
%t QuadPrimes2[10, -10, 139, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {139, 199, 391, 439, 451, 859, 979, 1039, 1231, 1291, 1459, 1531, 1699, 1819, 1951, 2071, 2131, 2239, 2539, 2551, 2791, 2911, 3331, 3379, 3559, 3631, 3799, 3979, 4339, 4471, 4651, 4759, 4819, 4891, 5071, 5431} ]; // _Vincenzo Librandi_, Aug 05 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008