%I #17 Sep 08 2022 08:45:34
%S 103,127,151,223,271,463,631,727,919,967,1039,1063,1087,1279,1327,
%T 1447,1471,1543,1759,1783,1879,1951,2143,2287,2311,2503,2551,2671,
%U 2719,2767,3079,3319,3391,3511,3583,3727,3823,3919,3943,4231,4327
%N Primes of the form 4x^2+4xy+103y^2.
%C Discriminant=-1632. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139957/b139957.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {55, 103, 127, 151, 223, 247, 271, 319} (mod 408).
%t QuadPrimes2[4, -4, 103, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(5000) | p mod 408 in [55, 103, 127, 151, 223, 247, 271, 319]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008