%I #16 Sep 08 2022 08:45:34
%S 3,139,163,211,283,379,499,547,571,619,643,691,787,811,907,1051,1459,
%T 1627,1723,1867,2011,2131,2179,2203,2251,2539,2659,2683,2731,2851,
%U 3019,3067,3259,3499,3547,3643,3907,4051,4219,4243,4363,4483,4651
%N Primes of the form 3x^2+136y^2.
%C Discriminant=-1632. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139956/b139956.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F Except for 3, the primes are congruent to {91, 139, 163, 211, 235, 283, 379, 403} (mod 408).
%t QuadPrimes2[3, 0, 136, 10000] (* see A106856 *)
%o (Magma) [3] cat [ p: p in PrimesUpTo(6000) | p mod 408 in [91, 139, 163, 211, 235, 283, 379, 403]]; // _Vincenzo Librandi_, Aug 02 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008