%I #19 Sep 08 2022 08:45:34
%S 2,193,197,233,277,337,373,457,557,613,673,877,953,1033,1117,1297,
%T 1493,1597,1733,1877,1913,1933,1997,2053,2153,2213,2417,2437,2657,
%U 2713,2837,2857,3137,3313,3593,3637,4153,4253,4397,4517,4813,4817
%N Primes of the form 2x^2+2xy+193y^2.
%C Discriminant=-1540. See A139827 for more information.
%H Vincenzo Librandi and Ray Chandler, <a href="/A139949/b139949.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {2, 57, 193, 197, 233, 277, 337, 373, 393, 417, 457, 513, 557, 613, 673, 813, 877, 893, 897, 953, 1033, 1073, 1117, 1157, 1173, 1297, 1317, 1437, 1493, 1513, 1537} (mod 1540).
%t QuadPrimes2[2, -2, 193, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 1540 in [2, 57, 193, 197, 233, 277, 337, 373, 393, 417, 457, 513, 557, 613, 673, 813, 877, 893, 897, 953, 1033, 1073, 1117, 1157, 1173, 1297, 1317, 1437, 1493, 1513, 1537]]; // _Vincenzo Librandi_, Aug 03 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008