login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 17x^2+8xy+17y^2.
2

%I #17 Sep 08 2022 08:45:34

%S 17,101,173,257,269,521,677,797,857,881,1013,1049,1109,1193,1277,1301,

%T 1361,1433,1613,1637,1889,1949,1973,2141,2357,2393,2441,2609,2729,

%U 2861,3041,3449,3461,3533,3617,3701,3797,3821,4073,4133,4157,4241

%N Primes of the form 17x^2+8xy+17y^2.

%C Discriminant=-1092. See A139827 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A139913/b139913.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049} (mod 1092).

%t Union[QuadPrimes2[17, 8, 17, 10000], QuadPrimes2[17, -8, 17, 10000]] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(5000) | p mod 1092 in [17, 101, 173, 185, 209, 257, 269, 341, 425, 521, 545, 677, 797, 857, 881, 965, 1013, 1049]]; // _Vincenzo Librandi_, Aug 01 2012

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008