%I #18 Sep 08 2022 08:45:34
%S 23,71,191,239,263,359,431,599,743,863,911,1031,1103,1367,1439,1583,
%T 1607,1871,2039,2087,2111,2207,2423,2447,2543,2591,2711,2879,2927,
%U 3119,3623,3719,3767,4127,4271,4391,4463,4799,4943,4967,5231,5279
%N Primes of the form 8x^2+8xy+23y^2.
%C Discriminant=-672. See A139827 for more information.
%C Also primes of the forms 23x^2+16xy+32y^2, 15x^2+6xy+23y^2 and 23x^2+4xy+44y^2. See A140633. - _T. D. Noe_, May 19 2008
%H Vincenzo Librandi and Ray Chandler, <a href="/A139878/b139878.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F The primes are congruent to {23, 71, 95} (mod 168).
%t QuadPrimes2[8, -8, 23, 10000] (* see A106856 *)
%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 168 in {23, 71, 95}]; // _Vincenzo Librandi_, Jul 30 2012
%K nonn,easy
%O 1,1
%A _T. D. Noe_, May 02 2008