login
Primes of the form 3x^2 + 35y^2.
1

%I #18 Sep 08 2022 08:45:33

%S 3,47,83,167,227,383,467,503,563,587,647,887,983,1223,1307,1427,1487,

%T 1823,1847,1907,2063,2243,2267,2663,2687,2903,3023,3083,3167,3323,

%U 3407,3527,3863,3923,3947,4007,4283,4583,4703,4787,5003,5087,5507

%N Primes of the form 3x^2 + 35y^2.

%C Discriminant = -420. See A139827 for more information.

%H Vincenzo Librandi and Ray Chandler, <a href="/A139845/b139845.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F The primes are congruent to {3, 47, 83, 143, 167, 227, 383} (mod 420).

%t QuadPrimes2[3, 0, 35, 10000] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(6000) | p mod 420 in {3, 47, 83, 143, 167, 227, 383}]; // _Vincenzo Librandi_, Jul 29 2012

%o (PARI) list(lim)=my(v=List([3]), s=[47, 83, 143, 167, 227, 383]); forprime(p=47, lim, if(setsearch(s, p%420), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 02 2008