Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 13 2012 14:46:42
%S 1,2,2,2,2,2,2,6,6,2,2,8,6,8,2,2,10,20,20,10,2,2,12,30,20,30,12,2,2,
%T 14,42,70,70,42,14,2,2,16,56,112,70,112,56,16,2,2,18,72,168,252,252,
%U 168,72,18,2,2,20,90,240,420,252,420,240,90,20,2
%N A polynomial triangle based on cross binomial Hodge number matrices/ Hodge diamonds that represent Calabi-Yau type binomials and their monomials.
%C The matrices M(n X n): crossed Pascal matrices:
%C {{1}}
%C ---
%C {{1,1},
%C {1,1}}
%C ---
%C {{1,0,1},
%C {0,2,0},
%C {1,0,1}}
%C ---
%C {{1,0,0,1},
%C {0,3,3,0}.
%C {0,3,3,0},
%C {1,0,0,1}}
%C ---
%C {{1,0,0,0,1},
%C {0,4,0,4.0},
%C {0,0,6,0,0},
%C {0,4,0,4.0},
%C {1,0,0,0,1}}
%C ---
%C {{1,0,0,0,01},
%C {0,5,0,0,5.0},
%C {0,0,10,10,0,0},
%C {0,0,10,10,0,0},
%C {0,5,0,0,5.0},
%C {1,0,0,0,01}}
%C Row sums: {1, 4, 6, 16, 26, 64, 108, 256, 442, 1024, 1796, ...}.
%C Fourier-like visualization of the polynomials:
%C s = Table[ParametricPlot3D[{g[[n]] /. x -> Cos[t], g[[
%C n]] /. x -> Sin[t], n3}, {t, -Pi, Pi}], {n, 1, 10}];
%C Show[s, PlotRange -> All]
%C These are Calabi-Yau type n-fold manifolds as Hodge monomial polynomials.
%C The K3 Hodge number matrix/ diamond is ( 2+20*x+23*x^2 ): M is
%C {{1,0,1},
%C {0,20,0},
%C {1,0,1}}
%C That matrix is this M[3] matrix 3X3 with the central 2 multiplied by a constant 10.
%C This kind of polynomial has been a staple of Calabi-Yau Algebraic Geometry of varieties since the early 90's.
%C The highest n-fold Hodge diamond matrices that I found in the literature that gave me this idea was by Rolf Schimrigk (see links).
%D Christian Meyer, Modular Calabi-Yau threefolds, 2005.
%H Rolf Schimmrigk <a href="http://arXiv.org/abs/hep-th/9405086">Mirror Symmetry and String Vacua from a Special Class of Fano Varieties</a>, arXiv:hep-th/9405087
%F Matrices: T(n,m,d)= If[n - m == 0, Binomial[d, n], If[d - n - m == 0, Binomial[d, m], 0]]; T(n,m,d)->Matrix M(d]); Polynomials in two variables: p(x,y,d)=Sum[Sum[M[d][[k, m]]*x^(k - 1)*y^(m - 1), {m, 1, d + 1}], {k, 1, d + 1}]; Sequence is: a(n,m)_out=Coefficients(p(x,1,d)).
%e {1},
%e {2, 2},
%e {2, 2, 2},
%e {2, 6, 6, 2},
%e {2, 8, 6, 8, 2},
%e {2, 10, 20, 20, 10, 2},
%e {2, 12, 30, 20, 30, 12, 2},
%e {2, 14, 42, 70, 70, 42, 14, 2},
%e {2, 16, 56, 112, 70, 112, 56, 16, 2},
%e {2, 18, 72, 168, 252, 252, 168, 72, 18, 2},
%e {2, 20, 90, 240, 420, 252, 420, 240, 90, 20, 2}
%t Clear[T, M, p, a, g] T[n_, m_, d_] := If[n - m == 0, Binomial[d, n], If[d - n - m == 0, Binomial[d, m], 0]]; M[d_] := Table[T[n, m, d], {n, 0, d}, {m, 0, d}]; p[x_, y_, d_] := Sum[Sum[M[d][[k, m]]*x^(k - 1)*y^(m - 1), {m, 1, d + 1}], {k, 1, d + 1}]; g = Table[ExpandAll[p[x, 1, d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[p[x, 1, w], x], {w, 1, 10}]]; Flatten[a] Join[{1}, Table[Apply[Plus, CoefficientList[p[x, 1, w], x]], {w, 1, 10}]];
%K nonn,tabl,uned
%O 1,2
%A _Roger L. Bagula_ and _Gary W. Adamson_, May 23 2008