login
Number of n X n symmetric binary matrices with all row sums 4.
7

%I #27 Mar 03 2024 08:20:09

%S 1,26,820,35150,1944530,133948836,11234051976,1127512146540,

%T 133475706272700,18406586045919060,2925154024273348296,

%U 530686776655470875076,109004840145995702773410,25164525076896596670014400,6486836210471246515195539840,1856264107759263993451053077856

%N Number of n X n symmetric binary matrices with all row sums 4.

%C From _R. J. Mathar_, Apr 07 2017: (Start)

%C These are the row sums of the following triangle, which shows in row n and column t the number of symmetric n X n {0,1}-matrices with trace t and 4 ones in each row and each column, 0 <= t <= n:

%C 0: 1;

%C 1: 0, 0;

%C 2: 0, 0, 0;

%C 3: 0, 0, 0, 0;

%C 4: 0, 0, 0, 0, 1;

%C 5: 1, 0, 10, 0, 15, 0;

%C 6: 15, 0, 270, 0, 465, 0, 70;

%C 7: 465, 0, 9660, 0, 19355, 0, 5670, 0;

%C (End)

%H Andrew Howroyd, <a href="/A139670/b139670.txt">Table of n, a(n) for n = 4..30</a>

%e a(4) = 1:

%e 1 1 1 1

%e 1 1 1 1

%e 1 1 1 1

%e 1 1 1 1

%Y Column k=4 of A333157 and row 4 of A188448.

%Y Cf. A000085 (row sums 1), A000986 (row sums 2), A110040 (row sums 3).

%K nonn

%O 4,2

%A _R. H. Hardin_, Jun 12 2008

%E Terms a(13) and beyond from _Andrew Howroyd_, Mar 09 2020