login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form x^2 + 345*y^2.
2

%I #22 Sep 08 2022 08:45:33

%S 349,409,541,601,829,1021,1129,1381,1429,1549,1669,1741,1789,2221,

%T 2281,2341,2749,3049,3061,3109,3121,3169,3229,3301,3361,3709,3889,

%U 4129,4261,4441,4549,4861,4969,5101,5521,5569,5641,5689,5821,5869

%N Primes of the form x^2 + 345*y^2.

%C Discriminant = -1380. See A139643 for more information.

%C The primes are congruent to {1, 49, 121, 169, 289, 301, 349, 361, 409, 469, 541, 601, 721, 829, 841, 901, 949, 961, 1021, 1129, 1189, 1369} (mod 1380).

%H Vincenzo Librandi and Ray Chandler, <a href="/A139658/b139658.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi).

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t QuadPrimes2[1, 0, 345, 10000] (* see A106856 *)

%o (Magma) [ p: p in PrimesUpTo(7000) | p mod 1380 in {1, 49, 121, 169, 289, 301, 349, 361, 409, 469, 541, 601, 721, 829, 841, 901, 949, 961, 1021, 1129, 1189, 1369}]; // _Vincenzo Librandi_, Jul 29 2012

%o (Magma) k:=345; [p: p in PrimesUpTo(6000) | NormEquation(k, p) eq true]; // _Bruno Berselli_, Jun 01 2016

%K nonn,easy

%O 1,1

%A _T. D. Noe_, Apr 29 2008