OFFSET
1,1
EXAMPLE
34 belongs to the sequence because the number of its divisors, 4, is not a Fibonacci number.
MAPLE
A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2), x=0, n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139590 := proc(n) RETURN(isA000045(n) and not isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139590(a000045) then printf("%d, ", a000045) ; fi ; od: # R. J. Mathar, May 11 2008
with(combinat): with(numtheory): F:={seq(fibonacci(j), j=1..30)}: a:= proc(n) if member(tau(fibonacci(n)), F) = false then fibonacci(n) else end if end proc: seq(a(n), n=1..50); # Emeric Deutsch
MATHEMATICA
With[{fibs=Fibonacci[Range[60]]}, Transpose[Select[Thread[{fibs, DivisorSigma[ 0, fibs]}], !MemberQ[ fibs, #[[2]]]&]][[1]]] (* Harvey P. Dale, Aug 04 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 09 2008
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, May 11 2008
STATUS
approved