login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139590
Fibonacci numbers with a non-Fibonacci number of divisors.
3
8, 21, 34, 55, 144, 377, 2584, 4181, 6765, 17711, 46368, 75025, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 14930352, 102334155, 165580141, 267914296, 701408733, 1134903170, 4807526976, 12586269025, 32951280099
OFFSET
1,1
COMMENTS
A000005(a(n)) is a non-Fibonacci number A001690.
EXAMPLE
34 belongs to the sequence because the number of its divisors, 4, is not a Fibonacci number.
MAPLE
A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2), x=0, n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139590 := proc(n) RETURN(isA000045(n) and not isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139590(a000045) then printf("%d, ", a000045) ; fi ; od: # R. J. Mathar, May 11 2008
with(combinat): with(numtheory): F:={seq(fibonacci(j), j=1..30)}: a:= proc(n) if member(tau(fibonacci(n)), F) = false then fibonacci(n) else end if end proc: seq(a(n), n=1..50); # Emeric Deutsch
MATHEMATICA
With[{fibs=Fibonacci[Range[60]]}, Transpose[Select[Thread[{fibs, DivisorSigma[ 0, fibs]}], !MemberQ[ fibs, #[[2]]]&]][[1]]] (* Harvey P. Dale, Aug 04 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 09 2008
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, May 11 2008
STATUS
approved