login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139565
Squares without a 0 digit and whose sum of digits minus 1 and product of digits plus 1 are both squares.
1
64, 187489, 529984, 2982529, 6165289, 45819361, 55279225, 59613841, 85914361, 89151364, 114297481, 118417924, 181252369, 183196225, 223981156, 231861529, 411197284, 446519161, 582691321, 599221441, 644195161, 876811321, 941814721
OFFSET
1,1
LINKS
Matthew M. Conroy, Worst proof ever
EXAMPLE
64 -> 6+4-1=9 (3) and 6*4+1=25 (5).
187489 -> 1+8+7+4+8+9-1=36 (6) and 1*8*7*4*8*9+1=16129 (127).
MAPLE
P:=proc(n) local i, k, w, y; for i from 1 by 1 to n do w:=0; k:=i^2; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; w:=w-1; y:=1; k:=i^2; while k>0 do y:=y*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; y:=y+1; if w=trunc(sqrt(w))^2 and y=trunc(sqrt(y))^2 and y>1 then print(i^2); fi; od; end: P(50000);
PROG
(PARI) isok(n) = issquare(n) && (d=digits(n)) && vecmin(d) && issquare(vecsum(d)-1) && issquare(prod(k=1, #d, d[k])+1); \\ Michel Marcus, Apr 09 2016
CROSSREFS
Sequence in context: A227660 A029753 A036533 * A214388 A016938 A017010
KEYWORD
easy,nonn,base
AUTHOR
EXTENSIONS
Name clarified by Travis Scholl, Apr 09 2016
STATUS
approved