login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct prime factors of n! + 2n - 1.
4

%I #31 Mar 29 2023 17:41:36

%S 1,1,1,1,2,2,2,3,1,1,5,2,3,4,2,2,3,4,3,3,3,3,4,2,5,4,2,6,6,2,4,5,5,3,

%T 3,3,2,5,5,4,5,2,5,5,5,5,8,8,5,6,4,2,7,5,5,6,4,5,3,8,7,6,5,7,4,3,5,6,

%U 1,1,7,5,8,7,3,1,4,4,5,5,4,2,4,5,5,7,3,6,7,7,4,7,6,5,7,5,3,8,5,3,4,6,5,7,7

%N Number of distinct prime factors of n! + 2n - 1.

%H Sean A. Irvine, <a href="/A139465/b139465.txt">Table of n, a(n) for n = 1..118</a>

%H Florian Luca and Igor E. Shparlinski, <a href="https://doi.org/10.5802/jtnb.524">On the largest prime factor of n! + 2^n - 1</a>, Journal de Théorie des Nombres de Bordeaux 17 (2005), 859-870.

%H Apurva Rai, <a href="/A139465/a139465.py.txt">Python Program for a(81)-a(100)</a>

%H Apurva Rai, <a href="/A139465/a139465_1.py.txt">Python program for a(101)-a(105)</a>

%F a(n) = A001221(A139464(n)). - _Amiram Eldar_, Feb 05 2020

%t a = {}; Do[AppendTo[a, n! + 2 n - 1], {n, 1, 40}]; b = {}; Do[c = Length[FactorInteger[a[[n]]]]; AppendTo[b, c], {n, 1, Length[a]}]; b (* Artur Jasinski *)

%t PrimeNu @ Table[n! + 2*n - 1, {n, 1, 30}] (* _Amiram Eldar_, Feb 05 2020 *)

%o (PARI) a(n)=omega(n!+2*n-1) \\ _Charles R Greathouse IV_, Feb 01 2013

%Y Cf. A001221, A127986, A127987, A139023, A139024, A139464, A139466, A139467.

%K nonn

%O 1,5

%A _Artur Jasinski_, Apr 22 2008

%E a(41)-a(60) from _Amiram Eldar_, Feb 05 2020

%E a(61)-a(80) from _Jinyuan Wang_, Apr 03 2020

%E a(81)-a(100) from _Apurva Rai_, Sep 20 2020

%E a(101)-a(105) from _Apurva Rai_, Sep 21 2020