Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 18:51:00
%S 0,0,2,0,1,4,4,1,6,2,4,8,4,8,10,2,2,12,8,4,14,8,2,16,4,8,18,16,8,20,
%T 16,4,22,4,20,24,16,16,26,8,4,28,14,16,30,10,8,32,28,10,34,16,13,36,
%U 24,32,38,16,20,40,15,32,42,12,20,44,32,8,46,40,28,48,20,32,50,32,44,52,26,20
%N Largest m<n such that first terms of the Collatz trajectory of m sum up to n; a(n)=0 if no such m exists.
%C a(n) = 0 iff A139436(n) = 0; a(n) > 0 for n > 4;
%C a(n) <= A004523(n); a(A008585(n)) = A005843(n).
%H R. Zumkeller, <a href="/A139435/b139435.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%e a(30) = 20: 30 = 20+10;
%e a(31) = 16: 31 = 16+8+4+2+1;
%e a(32) = 4: 32 = 4+2+1+4+2+1+4+2+1+4+2+1+4;
%e a(33) = 22: 33 = 22+11;
%e a(34) = 4: 34 = 4+2+1+4+2+1+4+2+1+4+2+1+4+2;
%e a(35) = 20: 35 = 20+10+5.
%Y Cf. A006370.
%K nonn
%O 1,3
%A _Reinhard Zumkeller_, Apr 21 2008