Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #78 May 10 2023 11:58:12
%S 1,1,1,1,1,2,7,22,57,127,254,474,859,1574,3004,6008,12393,25773,53143,
%T 107883,215766,427351,843756,1669801,3321891,6643782,13333932,
%U 26789257,53774932,107746282,215492564,430470899,859595529,1717012749,3431847189,6863694378
%N a(n) = Sum_{k >= 0} binomial(n,5*k).
%C From _Gary W. Adamson_, Mar 13 2009: (Start)
%C M^n * [1,0,0,0,0] = [a(n), A139761(n), A139748(n), A139714(n), A133476(n)]
%C where M = the 5 X 5 matrix [1,1,0,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,0,1,1; 1,0,0,0,1]
%C Sum of terms = 2^n. Example: M^6 * [1,0,0,0,0] = [7, 15, 20, 15, 7]; sum = 2^6 = 64. (End)
%C {A139398, A133476, A139714, A139748, A139761} is the difference analog of the hyperbolic functions of order 5, {h_1(x), h_2(x), h_3(x), h_4(x), h_5 (x)}. For a definition see the reference "Higher Transcendental Functions" and the Shevelev link. - _Vladimir Shevelev_, Jun 14 2017
%D A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Ch. 18.
%H Vincenzo Librandi, <a href="/A139398/b139398.txt">Table of n, a(n) for n = 0..1000</a>
%H John B. Dobson, <a href="http://arxiv.org/abs/1610.09361">A matrix variation on Ramus's identity for lacunary sums of binomial coefficients</a>, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,2).
%F G.f.: -(x-1)^4/((2*x-1)*(x^4-2*x^3+4*x^2-3*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
%F E.g.f.: (exp(z)^2+2*exp(3/4*z+1/4*z*sqrt(5))*cos(1/4*z*sqrt(2)*sqrt(5+sqrt(5)))+ 2*exp(3/4*z-1/4*z*sqrt(5))*cos(1/4*z*sqrt(2)*sqrt(5-sqrt(5))))/5. - _Peter Luschny_, Jul 10 2012
%F a(n) = (2^n + sqrt(5)*(cos(Pi*n/5) - (-1)^n*cos(2*Pi*n/5))*A000045(n) + (cos(Pi*n/5) + (-1)^n*cos(2*Pi*n/5))*A000032(n))/5. - _Vladimir Reshetnikov_, Oct 04 2016
%F From _Vladimir Shevelev_, Jun 17 2017: (Start)
%F a(n) = round((2/5)*(2^(n-1) + phi^n*cos(Pi*n/5))), where phi is the golden ratio and round(x) is the integer nearest to x.
%F The formula follows from the identity a(n)=1/5*Sum_{j=1..5}((omega_5)^j + 1)^n, where omega_5=exp(2*Pi*i)/5 (cf. Theorem 1 of [Shevelev] link for i=1, n=5, m:=n). Further note that for a=cos(x)+i*sin(x), a+1 = 2*cos ^2 (x/2) + i*sin(x), and for the argument y of a+1 we have tan(y)=tan(x/2) and r^2 = 4*cos^4(x/2) + sin^2(x) = 4*cos^2(x/2). So (a+1)^n = (2*cos(x /2))^n*(cos(n*x/2) + i*sin(n*x/2)). Using this, for x=2*Pi/5, we have (omega_5+1)^n = phi^n(cos(Pi*n/5) + i*sin(Pi*n/5)). Since (omega_5)^4+1=(1+omega_5)/omega_5, we easily find that ((omega_5)^4+1)^n is conjugate to (omega_5+1)^n. So (omega_5+1)^n+((omega_5)^4+1)^n = phi^n*cos(Pi*n/5). Further, we similarly obtain that (omega_5)^2+1 is conjugate to (omega_5) ^3+1=(1+(omega_5)^2)/(omega_5)^2 and ((omega_5)^2+1)^n +((omega_5)^3+1)^n = 2*(sqrt(2-phi))^n*cos(2*Pi*n/5). The absolute value of the latter <= 2*(2-phi)^(n/2) and quickly tends to 0. Finally, ((omega_5)^5+1)^n=2^n, and the formula follows. (End)
%F a(n+m) = a(n)*a(m) + H_2(n)*H_5(m) + H_3(n)*H_4(m) + H_4(n)*H_3(m) + H_5(n)*H_2(m), where H_2=A133476, H_3=A139714, H_4=A139748, H_5=A139761. - _Vladimir Shevelev_, Jun 17 2017
%p f:=(n,r,a) -> add(binomial(n,r*k+a),k=0..n); fs:=(r,a)->[seq(f(n,r,a),n=0..40)];
%p A139398_list := proc(n) local i; (exp(z)^2+2*exp(3/4*z+1/4*z*sqrt(5))* cos(1/4*z*sqrt(2)*sqrt(5+sqrt(5)))+2*exp(3/4*z-1/4*z*sqrt(5))* cos(1/4*z*sqrt(2)*sqrt(5-sqrt(5))))/5; series(%,z,n+2): seq(simplify(i!*coeff(%,z,i)), i=0..n) end: A139398_list(35); # _Peter Luschny_, Jul 10 2012
%t LinearRecurrence[{5,-10,10,-5,2},{1,1,1,1,1},40] (* _Harvey P. Dale_, Jun 11 2015 *)
%t Expand@Table[(2^n + Sqrt[5] (Cos[Pi n/5] - (-1)^n Cos[2 Pi n/5]) Fibonacci[n] + (Cos[Pi n/5] + (-1)^n Cos[2 Pi n/5]) LucasL[n])/5, {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 04 2016 *)
%o (Magma) [n le 5 select 1 else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+2*Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, Jun 27 2017
%Y Cf. A000749, A024493, A024494, A024495, A038503, A038504, A038505, A133476, A139714, A139748, A139761.
%K nonn,easy
%O 0,6
%A _N. J. A. Sloane_, Jun 13 2008