|
|
A139221
|
|
Numbers k such that both 41+(k+k^2)/2 and 41+(k+k^2) are primes.
|
|
3
|
|
|
0, 3, 11, 20, 23, 27, 32, 39, 48, 51, 59, 60, 83, 108, 111, 116, 128, 132, 135, 171, 188, 203, 212, 227, 240, 263, 275, 315, 324, 356, 359, 363, 384, 392, 447, 476, 479, 515, 528, 588, 627, 647, 648, 672, 731, 759, 780, 804, 839, 864, 875, 900, 903, 968, 975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Intersection of A139220 and A056561.
|
|
LINKS
|
Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
If k = 11 then 41 + (k + k^2) / 2 = 107 (prime) and 41 + (k + k^2) = 173 (prime).
|
|
MATHEMATICA
|
Select[Table[Range[0, 2000]], PrimeQ[41+(#+#^2)/2]&&PrimeQ[41+#+#^2]&]
|
|
PROG
|
(Magma) [k:k in [0..1000]| IsPrime(41+(k+k^2) div 2) and IsPrime(41+k+k^2)]; // Marius A. Burtea, Feb 12 2020
(PARI) for(n=0, 1000, if(isprime(binomial(n+1, 2) +41) && isprime(n^2+n+41), print1(n", "))) \\ G. C. Greubel, Feb 12 2020
(Sage) [n for n in (0..1000) if is_prime(binomial(n+1, 2)+41) and is_prime(n^2+n+41)] # G. C. Greubel, Feb 12 2020
|
|
CROSSREFS
|
Cf. A000217, A056561, A139219, A139220.
Sequence in context: A279257 A166096 A139220 * A300381 A006876 A031239
Adjacent sequences: A139218 A139219 A139220 * A139222 A139223 A139224
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Apr 11 2008
|
|
STATUS
|
approved
|
|
|
|