Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 08 2018 03:01:43
%S 2,2,3,5,5,3,7,5,7,5,11,5,13,7,5,7,17,7,19,5,7,11,23,5,11,13,11,7,29,
%T 5,31,11,11,17,7,7,37,19,13,5,41,7,43,11,7,23,47,7,17,11,17,13,53,11,
%U 11,7,19,29,59,5,61,31,7,11,13,11,67,17,23,7,71,7,73,37,11,19,11,13,79,7,11
%N a(n) = smallest prime number p such that p!/n is an integer.
%H Robert Israel, <a href="/A139171/b139171.txt">Table of n, a(n) for n = 1..10000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre%27s_formula">Legendre's formula</a>
%p f:= proc(n) local F,m,Q,E,p;
%p F:= ifactors(n)[2];
%p m:= nops(F);
%p Q:= map(t -> t[1],F);
%p E:= map(t -> t[2],F);
%p p:= max(Q)-1;
%p do
%p p:= nextprime(p);
%p if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
%p od
%p end proc:
%p f(1):= 2:
%p map(f, [$1..100]); # _Robert Israel_, Mar 07 2018
%t a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, Prime[m]], {n, 1, 100}]; a
%o (PARI) a(n) = forprime(p=2,, if (!(p! % n), return (p))); \\ _Michel Marcus_, Mar 08 2018
%Y Prime equivalent of Kempner numbers A002034.
%Y For quotients p!/n see A139170.
%Y For indices of primes in this sequence see A139169.
%Y Cf. A082672, A089085, A089130, A117141, A007749, A139056-A139066, A139068, A137390, A139070-A139075, A139148-A139157, A139159, A139160-A139166, A139089, A139168-A139170.
%K nonn,look
%O 1,1
%A _Artur Jasinski_, Apr 11 2008