login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139128
Number of distinct representations A005244(n) = A005244(i)*A005244(j)-1 with i < j.
3
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
OFFSET
1,28
COMMENTS
A139129 gives the smallest terms in A005244 having exactly n representations.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000 (n = 1 to 500 from R. Zumkeller)
Eric Weisstein's World of Mathematics, Hofstadter Sequences
EXAMPLE
A005244(28) = 129: a(28) = #{26*5-1,65*2-1} = 2.
MAPLE
R:= [2, 3]: count:= 2:
for i from 4 while count < 10000 do
found:= false;
for j from 1 while R[j]^2 < i+1 do
if i mod R[j] = R[j]-1 and ListTools:-BinarySearch(R, (i+1)/R[j]) <> 0 then
found:= true; break
fi
od;
if found then R:= [op(R), i]; count:= count+1;
od:
f:= proc(n) local t, i, j, x, L;
x:= R[n]+1:
L:= R[1..n-1];
t:= 0:
for i from 1 while R[i]^2 < x do
if x mod R[i] = 0 and ListTools:-BinarySearch(L, x/R[i]) <> 0 then t:= t+1 fi
od;
t
end proc:
map(f, [$1..10000]); # Robert Israel, Jun 21 2024
CROSSREFS
Sequence in context: A128184 A373244 A025450 * A106752 A136441 A030561
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 09 2008
EXTENSIONS
a(2) corrected and definition clarified by Robert Israel, Jun 21 2024
STATUS
approved