Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 28 2019 09:53:59
%S 2,4,18,74,1198,4794,76718,306874,4909998,314239934,1256959738,
%T 80445423294,1287126772718,5148507090874,82376113453998,
%U 5272071261055934,337412560707579838,1349650242830319354,86377615541140438718,1382041848658247019502,5528167394632988078010
%N Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime, using "0" for primes and "1" for nonprime numbers.
%C a(n) is the decimal representation of A139103(n) interpreted as binary number.
%H Harvey P. Dale, <a href="/A139104/b139104.txt">Table of n, a(n) for n = 1..467</a>
%H Omar E. Pol, <a href="http://polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.
%F a(n) = 2 * A139102(n).
%F From _Ridouane Oudra_, Aug 27 2019: (Start)
%F a(n) = 2^prime(n) - 1 - (1/2)*(n + Sum_{i=1..prime(n)} 2^(prime(n)-i)*pi(i)), where prime(n) = A000040(n) and pi(n) = A000720(n)
%F a(n) = A001348(n) - A121240(n)
%F a(n) = A118255(A000040(n)). (End)
%e a(4)=74 because 74 written in base 2 is 1001010 and the string "1001010" shows the distribution of prime numbers up to the 4th prime, using "0" for primes and "1" for nonprime numbers.
%t Table[ sum = 0; For[i = 1, i <= Prime[n] , i++, sum = sum*2;
%t If[! PrimeQ[i], sum++]]; sum, {n, 1, 21}] (* _Robert Price_, Apr 03 2019 *)
%t Module[{nn=30,t},t=Table[If[PrimeQ[n],0,1],{n,Prime[nn]}];Table[ FromDigits[ Take[t,p],2],{p,Prime[Range[nn]]}]] (* _Harvey P. Dale_, Jul 15 2019 *)
%o (PARI) a(n) = fromdigits(vector(prime(n), k, !isprime(k)), 2); \\ _Michel Marcus_, Apr 04 2019
%Y Subset of A118255.
%Y Cf. A000040, A018252, A139101, A139102, A139103, A139119, A139120, A139122, A000720, A001348, A121240.
%K nonn
%O 1,1
%A _Omar E. Pol_, Apr 08 2008
%E More terms from _R. J. Mathar_, May 22 2008
%E a(19)-a(21) from _Robert Price_, Apr 03 2019