login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that show the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.
11

%I #25 Jan 10 2022 06:52:08

%S 1,10,1001,100101,1001010111,100101011101,1001010111010111,

%T 100101011101011101,1001010111010111010111,

%U 1001010111010111010111011111,100101011101011101011101111101,100101011101011101011101111101011111,1001010111010111010111011111010111110111

%N Numbers that show the distribution of prime numbers up to the n-th prime minus 1, using "0" for primes and "1" for nonprime numbers.

%C a(n) has A000040(n)-1 digits, n-1 digits "0" and A000040(n)-n digits "1".

%H Michael S. Branicky, <a href="/A139101/b139101.txt">Table of n, a(n) for n = 1..168</a>

%H Omar E. Pol, <a href="http://polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.

%t Table[ sum = 0; For[i = 1, i <= Prime[n] - 1 , i++, sum = sum*2;

%t If[! PrimeQ[i], sum++]]; IntegerString[sum, 2], {n, 1, 13}] (* _Robert Price_, Apr 03 2019 *)

%o (PARI) a(n) = fromdigits(vector(prime(n)-1, k, !isprime(k)), 10); \\ _Michel Marcus_, Apr 04 2019

%o (Python)

%o from sympy import isprime, prime

%o def a(n): return int("".join(str(1-isprime(i)) for i in range(1, prime(n))))

%o print([a(n) for n in range(1, 14)]) # _Michael S. Branicky_, Jan 10 2022

%o (Python) # faster version for initial segment of sequence

%o from sympy import isprime

%o from itertools import count, islice

%o def agen(): # generator of terms

%o an = 0

%o for k in count(1):

%o an = 10 * an + int(not isprime(k))

%o if isprime(k+1):

%o yield an

%o print(list(islice(agen(), 13))) # _Michael S. Branicky_, Jan 10 2022

%Y Binary representation of A139102.

%Y Subset of A118256.

%Y Cf. A000040, A018252, A139103, A139104, A139119, A139120, A139122.

%K nonn,base

%O 1,2

%A _Omar E. Pol_, Apr 08 2008