login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n-th perfect number minus 1, written in base 2.
2

%I #5 Mar 11 2014 01:34:11

%S 101,11011,111101111,1111110111111,1111111111110111111111111,

%T 111111111111111101111111111111111,

%U 1111111111111111110111111111111111111

%N n-th perfect number minus 1, written in base 2.

%C Subset of A138148, cyclops numbers with binary digits, only.

%C Subset of A002113, palindromes in base 10.

%C a(n) has 2*A090748(n) digits 1.

%C The number of digits of a(n) is 2*A000043(n)-1, equal to A133033(n), the number of proper divisors of n-th perfect number.

%C a(n) = (A135627(n) written in base 2).

%H Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.

%F a(n) = A138148(A090748(n)).

%e n ... A000396(n) - 1 = A135627(n) ............. a(n)

%e 1 ............ 6 - 1 = ...... 5 ............... 101

%e 2 ........... 28 - 1 = ..... 27 .............. 11011

%e 3 .......... 496 - 1 = .... 495 ............ 111101111

%e 4 ......... 8128 - 1 = ... 8127 .......... 1111110111111

%e 5 ..... 33550336 - 1 = 33550335 .... 1111111111110111111111111

%Y Cf. A000043, A000396, A090748, A133033, A134808, A135627, A138131, A138148.

%K nonn,base,less

%O 1,1

%A _Omar E. Pol_, Apr 08 2008, Apr 09 2008, Apr 14 2008