login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) - 1) / 2 in powers of q.
3

%I #16 Nov 16 2023 07:44:05

%S 1,0,0,1,0,0,2,0,3,0,0,0,2,0,0,1,0,0,2,0,0,0,0,0,1,0,3,2,0,0,2,0,0,0,

%T 0,3,2,0,0,0,0,0,2,0,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,0,2,0,6,1,0,0,2,0,

%U 0,0,0,0,2,0,0,2,0,0,2,0,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,2,0,0,1,0,0,2,0,0

%N Expansion of (theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) - 1) / 2 in powers of q.

%C Half the number of integer solutions to x^2 + x*y + 7*y^2 = n. - _Jianing Song_, Nov 20 2019

%F a(n) is multiplicative and a(3^e) = 3 if e>1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).

%F a(3*n + 2) = a(4*n + 2) = 0.

%F G.f.: (Sum_{i,j} x^(i*i + i*j + 7*j*j) - 1) / 2.

%F A138805(n) = 2 * a(n) unless n=0. A033687(n) = a(3*n + 1). A097195(n) = a(6*n + 1). A123884(n) = a(12*n + 1). 2 * A121361(n) = a(12*n + 7).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - _Amiram Eldar_, Nov 16 2023

%e q + q^4 + 2*q^7 + 3*q^9 + 2*q^13 + q^16 + 2*q^19 + q^25 + 3*q^27 + ...

%t f[p_, e_] := If[Mod[p, 6] == 1, e + 1, (1 + (-1)^e)/2]; f[2, e_] := 1 - Mod[e, 2]; f[3, e_] := 3; f[3, 1] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 07 2023 *)

%o (PARI) {a(n) = if( n<1, 0, if( n%3 == 2, 0, if( n%3==1, sumdiv(n, d, kronecker(-3, d)), if( n%9==0, 3 * sumdiv(n/9, d, kronecker(-3, d))))))}

%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-3, d)) - if( n%3==0, sumdiv(n/3, d, [0, 1, -1, -3, 1, -1, 3, 1, -1][d%9+1])))}

%o (PARI) {a(n) = if( n<1, 0, qfrep([2, 1; 1, 14], n, 1)[n])}

%Y Cf. A138805 (number of integer solutions to x^2 + x*y + 7*y^2 = n).

%Y Cf. A033687, A073010, A097195, A123884, A121361.

%Y Similar sequences: A096936, A113406, A110399.

%K nonn,easy,mult

%O 1,7

%A _Michael Somos_, Mar 30 2008