login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+(n+1)) + (n*(n+1)) + (n^(n+1)).
1

%I #8 Sep 13 2024 17:49:20

%S 1,6,19,100,1053,15666,279991,5764872,134217817,3486784510,

%T 100000000131,3138428376876,106993205379253,3937376385699498,

%U 155568095557812463,6568408355712890896,295147905179352826161,14063084452067724991350,708235345355337676358011,37589973457545958193356020,2097152000000000000000000461

%N a(n) = (n+(n+1)) + (n*(n+1)) + (n^(n+1)).

%C Sum of three arithmetic operations (sum, product, powers) of two consecutive integers.

%F a(n) = A028387(n) + A007778(n). - _R. J. Mathar_, Apr 03 2008

%e a(0) = (0+1) + (0*1) + (0^1) = 1;

%e a(1) = (1+2) + (1*2) + (1^2) = 6;

%e a(2) = (2+3) + (2*3) + (2^3) = 19; etc.

%p A028387 := proc(n) n+(n+1)^2 ; end: A007778 := proc(n) n^(n+1) ; end: A138748 := proc(n) A028387(n)+A007778(n) ; end: seq(A138748(n),n=0..20) ; # _R. J. Mathar_, Apr 03 2008

%t Table[2n+1+n(n+1)+n^(n+1),{n,0,20}] (* _Harvey P. Dale_, Sep 13 2024 *)

%K easy,nonn

%O 0,2

%A _Anthony J. DeFusco II_, Mar 28 2008

%E More terms from _R. J. Mathar_, Apr 03 2008