login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for 6th Du Bois Reymond constant.
6

%I #5 May 13 2013 01:48:48

%S 0,4531,1,1,3,1,8,3,2,1,3,1,1,9,1,2,9,1,1,5,3,2,1,1,5,1,1,3,5,3,2,1,6,

%T 1,7,2,4,1,3,1,23,2,8,2,1,19,1,23,1,3,1,18,1,2,1,1,3,24,1,4,1,1,5,1,1,

%U 2,1,1,89,1,1,1,2,1,8,1,52,1,1,1,1,1,4,1,15,1,1,1,5,3,1,2,1,4,1,4,24,5,1,5

%N Continued fraction for 6th Du Bois Reymond constant.

%t ContinuedFraction[FullSimplify[TrigToExp[ -3 - 2Residue[x^2/((Tan[x] - x) (1 + x^2)^3), {x, I}]]], 100](*Artur Jasinski*)

%o (PARI) contfrac((exp(6)-6*exp(4)+3*exp(2)-98)/32) \\ _Charles R Greathouse IV_, Feb 24 2012

%Y Cf. A062545, A062546, A085466, A085467, A138729, A138730, A138731, A138732, A138733.

%K nonn,cofr

%O 1,2

%A _Artur Jasinski_, Mar 26 2008